Skip to main content

Centrality as a Vertex Invariant (or 'Atom Descriptor')

EDIT: After some more tests, I now realise that this is not really as great a vertex label/descriptor as I thought it was. For example, see these four graphs on 7 vertices that fail to distinguish vertices properly:



The first one should have a central vertex in a different class than the other blue vertices. The green class in the second graph should be split, and same for the third graph. And so on.



So, in the last post I talked about the ideas of Randić et al for calculating the 'centrality' of vertices in a graph. Interestingly, the numbers calculated for each vertex act as a kind of equivalence class label or vertex invariant. This is similar in many ways to Morgan numbers (sorry, Egon's post doesn't actually explain them, but they are the sum of degrees across extended neighbourhoods).

For example, here is one of the examples from the previous post:


With the centrality matrix in the middle, and the 'label' made by sorting the row elements in descending order to the right of that. Finally, these labels are converted to more easily read alphabetic ones - classes in some sense ('a' = {0, 5} and 'b' = {1, 2, 3, 4}). These classes make sense, given that the middle vertices are in the same class, with the rest in another class.

Compare this to the graph with the same ORS of [6, 6, 5, 5, 5, 5]:


The graph here is nearly the same - with only the edge 1:3 missing - yet the labels don't distinguish between vertices {1, 3} and vertices {2, 4}. One possibility mentioned in the paper is to use combinations of descriptors (fairly common practice in cheminformatics, I suspect). The simplest one that occurs to me is just to add the degree of a vertex to the start of the label. That makes the label for {1, 3} into "1320000", distinguishing them from the one for {2, 4} which is "2320000".

Anyway, here is a picture of a number of pairs of graphs with the same ORS, colored by the label just described:


Note how some (but not all!) of these have the 'same' equivalence classes in different arrangements. Be aware that the colors may not be totally meaningful when compared between graphs. Code for this is here.

Comments

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …