Skip to main content

Using the CDK's group module

There is a new module and package for the CDK that is currently under review. This is a short guide to how to use it - to help both reviewers and users.

The basic idea is that molecules can be considered as a kind of graph, and that one useful thing to calculate about such graphs is the automorphism group that preserves element labels and/or bond labels. To put it another way, calculating the symmetries of the molecule - although I should point out that it's not quite the same as the crystallographic symmetry groups.

As a simple example, consider these two molecules (1,4-cylohexadiene and 4h-pyran) :

They are numbered from 0-5 for programming convenience; on the right each molecule has a table of automorphisms written as permutations in cycle notation. It should be fairly obvious that - for example - the H-Flip sends atom 0 to atom 4, 1 to 3, and fixes 2 and 5. Only the H-Flip is an automorphism for 4h-pyran, due to the oxygen atom.

The code to do this is fairly short and really just involves creating an AtomDiscretePartitionRefiner and then calling the getAutomorphismGroup(IAtomContainer) method. This returns a PermutationGroup which stores the automorphisms. What you do with them then is up to you...

There is a corresponding class to find automorphisms of the bonds of an atom container. This may be less useful, but here is napthalene as an example:

Note that the bonds are numbered, not the atoms; also the two different double-bond arrangements are called a and b for reference. The a form has only the V-Flip automorphism that swaps bonds (1, 2), (3, 10) and so on.

Finally, what are the actual uses in chemistry for this? Well, one possibility is external symmetry numbers (interesting reference, actually) - as also mentioned in this post. Another is molecule generation; it's used heavily in AMG. A future possibility might also be using it in CIP or other chirality code.


Patrik Rydberg said…
There is already some related code in the CDK which does symmetry of atoms. You might be interested in this, it is the EquivalentClassPartitioner and the function getTopoEquivClassbyHuXu
gilleain said…
This comment has been removed by the author.
gilleain said…
Hmm. I thought it double-posted so I deleted the duplicate comment - and now it's gone..

Anyway, it was :

"Good point, Patrik - one of the strengths of the CDK is that it has multiple solutions. It's also one of the weaknesses!

There was also an ancient branch that had a class to find the symmetries from the 3D structure, that could be integrated somehow. It's a little difficult to make packages written by different authors to work neatly together without making large changes. Some sort of interface, perhaps... "

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:

Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:

One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:

Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.

The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:

In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:

Here, the same BSP tree is on the left (without some labels), and the slicea…