Skip to main content

Tests that Pass, Tests that Fail

The AMG (alternative molecule generator) is now good enough to run proper tests on, with help from Tobias Kind who has long promised - or threatened, perhaps :) - to test a structure generators. It should lead to software that is of more than theoretical interest.

Currently, there is a download available from github, or it can be built from the project directory if you are familiar with ant and are willing to change the file to point to a CDK directory. There is an instructions.txt file, with some examples of usages; the -h flag also works as might be expected.

As for passing tests, it currently does better with hydrocarbons - CnH2n + x for x in {-2, 0, 2}. However, it's starting to improve on the more mixed formulae, with oxygen, nitrogen, and so on. The two child-listing methods (filter/symmetric) have different behaviour, annoyingly.

Looking at one of the two pairs of duplicates in the set of C6H4 structures shows why it fails. The method here is the symmetry one, where only the minimal representative of an augmentation under the automorphism group of the parent is chosen. Sadly, this picture shows a case where the method fails:

The parent is highlighted in grey, and the child graphs (A, B) are shown on left and right. The central image shows how both 5a and 5b are adding different sets of bonds. Since the automorphism group of the parent has only the identity permutation (ie: it is trivial) any set of bonds will be equivalent.

I had realised that this could happen, but I foolishly assumed that it was rarer than this. That may be the case for simple graphs, but apparently not for multigraphs like this...


Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:

Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:

One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:

Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.

The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:

In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:

Here, the same BSP tree is on the left (without some labels), and the slicea…