Skip to main content

Tests that Pass, Tests that Fail

The AMG (alternative molecule generator) is now good enough to run proper tests on, with help from Tobias Kind who has long promised - or threatened, perhaps :) - to test a structure generators. It should lead to software that is of more than theoretical interest.

Currently, there is a download available from github, or it can be built from the project directory if you are familiar with ant and are willing to change the build.properties file to point to a CDK directory. There is an instructions.txt file, with some examples of usages; the -h flag also works as might be expected.

As for passing tests, it currently does better with hydrocarbons - CnH2n + x for x in {-2, 0, 2}. However, it's starting to improve on the more mixed formulae, with oxygen, nitrogen, and so on. The two child-listing methods (filter/symmetric) have different behaviour, annoyingly.

Looking at one of the two pairs of duplicates in the set of C6H4 structures shows why it fails. The method here is the symmetry one, where only the minimal representative of an augmentation under the automorphism group of the parent is chosen. Sadly, this picture shows a case where the method fails:


The parent is highlighted in grey, and the child graphs (A, B) are shown on left and right. The central image shows how both 5a and 5b are adding different sets of bonds. Since the automorphism group of the parent has only the identity permutation (ie: it is trivial) any set of bonds will be equivalent.

I had realised that this could happen, but I foolishly assumed that it was rarer than this. That may be the case for simple graphs, but apparently not for multigraphs like this...

Comments

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …