Skip to main content

Speed Optimization of AMG

Now that AMG's results are getting better, I've started to look at improvements to the speed. At the moment, it's about 10 times as slow as OMG - probably due to my use of an inferior canonical checker (ie: not nauty).

One obvious improvement has been to avoid extending molecules with too many or too few hydrogens. Previously, the hydrogens were only checked for the leaves - that is, at the final step. It is possible to prune the generation tree earlier, if you make two simple assumptions (see image).

The min extension checks the smallest possible way to add all the remaining atoms to the molecule - which is just a tree. This gives the maximum number of hydrogens that could be added at this point. The max extension does the opposite, checking the case where all remaining atoms are added (at their maximum valence) which has the effect of effectively removing hydrogens.

So, the number of implicit hydrogens for a partial structure is added or removed by these two bounds, and the target hydrogen count is checked to see if it lies in this range. The effect is to prune branches of the generation tree before they even need to be checked for canonicity or other expensive tests:

The tree here is arranged so that the number of hydrogens decreases from left to right - although this may not be the order the structures are actually visited. The dashed lines indicate how the side branches are pruned away.


Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:

Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:

One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Havel-Hakimi Algorithm for Generating Graphs from Degree Sequences

A degree sequence is an ordered list of degrees for the vertices of a graph. For example, here are some graphs and their degree sequences:

Clearly, each graph has only one degree sequence, but the reverse is not true - one degree sequence can correspond to many graphs. Finally, an ordered sequence of numbers (d1 >= d2 >= ... >= dn > 0) may not be the degree sequence of a graph - in other words, it is not graphical.

The Havel-Hakimi (HH) theorem gives us a way to test a degree sequence to see if it is graphical or not. As a side-effect, a graph is produced that realises the sequence. Note that it only produces one graph, not all of them. It proceeds by attaching the first vertex of highest degree to the next set of high-degree vertices. If there are none left to attach to, it has either used up all the sequence to produce a graph, or the sequence was not graphical.

The image above shows the HH algorithm at work on the sequence [3, 3, 2, 2, 1, 1]. Unfortunately, this produce…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:

In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:

Here, the same BSP tree is on the left (without some labels), and the slicea…