Skip to main content

1,4-Benzoquinone and the DeduceBondSystemsTool

Once upon a time, there was a DeduceBondSystemsTool, and...

Er, anyway. Further to a patch made on the tool (patch ID : 3040138), there is a failing test for 1,4-benzoquinone:

The tool generates A, and the test wants B. Now, the problem is not that the tool is not trying B as a possibility, but that it generates A first and the final step doesn't remove it or rank it as better than A.

Understanding this requires an understanding of the algorithm. This is (roughly):
  1. For each ring, generate a list of possible positions for all numbers of double bonds.
  2. Generate a set of molecules by combining these positions together.
  3. Remove 'bad' solutions and pick a solution with the least number of 'bad' N/S atoms.
where the definition of 'bad' is based on chemical rules like atom types.

Now, neither A nor B are bad solutions, and they don't contain N or S atoms, so they both have a rank of zero, and the first one generated will be returned. So, there is really no particular reason that the test should pass.

In general, it might be good to separate the generation of possible solutions from the ranking/filtering process. So that the computational or mathematical problem of generation is done by one class, while other classes determine which is the optimal solution (or set of solutions).

Comments

If we would know that the O was sp2, then the first solution could be marked as bad. Not sure if that information is available at the DeduceBondSystemTool level...
gilleain said…
It checks for sp2 atoms, but only in the ring...

This is where a separation between generation and chemical rules would make things clearer. Of course, it would be better to constrain and generate, rather than generate and test.

Another architectural issue is that a bond system generation tool might benefit from detecting symmetric atoms. This would mean new module dependencies (eg, on the signature module).

Popular posts from this blog

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Common Vertex Matrices of Graphs

There is an interesting set of papers out this year by Milan Randic et al (sorry about the accents - blogger seems to have a problem with accented 'c'...). I've looked at his work before here.

[1] Common vertex matrix: A novel characterization of molecular graphs by counting
[2] On the centrality of vertices of molecular graphs

and one still in publication to do with fullerenes. The central idea here (ho ho) is a graph descriptor a bit like path lengths called 'centrality'. Briefly, it is the count of neighbourhood intersections between pairs of vertices. Roughly this is illustrated here:


For the selected pair of vertices, the common vertices are those at the same distance from each - one at a distance of two and one at a distance of three. The matrix element for this pair will be the sum - 2 - and this is repeated for all pairs in the graph. Naturally, this is symmetric:


At the right of the matrix is the row sum (∑) which can be ordered to provide a graph invarian…

Signatures with user-defined edge colors

A bug in the CDK implementation of my signature library turned out to be due to the fact that the bond colors were hard coded to just recognise the labels {"-", "=", "#" }. The relevant code section even had an XXX above it!

Poor show, but it's finally fixed now. So that means I can handle user-defined edge colors/labels - consider the complete graph (K5) below:

So the red/blue colors here are simply those of a chessboard imposed on top of the adjacency matrix - shown here on the right. You might expect there to be at least two vertex signature classes here : {0, 2, 4} and {1, 3} where the first class has vertices with two blue and two red edges, and the second has three blue and two red.

Indeed, here's what happens for K4 to K7:

Clearly even-numbered complete graphs have just one vertex class, while odd-numbered ones have two (at least?). There is a similar situation for complete bipartite graphs:

Although I haven't explored any more of these…