Skip to main content

Faulon's Signatures : A Possible Interpretation

Several recent papers by Faulon concern an idea he calls 'signatures'. This post is just a record of what I understood them to be.

Firstly, a signature is a subgraph of a molecular graph. There is a distinction between atomic signatures - which is a tree rooted at a particular atom - and a molecular signature, which is the set of atomic signatures for each atom in a molecule.

A tree is a graph with no cycles, so an atomic signature is not just a subgraph. Like a path, a signature has a length - or rather a height. Here is a picture of signatures of heights 1-4 for a fused ring structure:


The graph G on the left has one of its atoms labelled (a), and each of the trees in the center is a signature rooted at that atom. On the right, is the simple string form of the tree, as a nested list. I should point out that the signatures in these images may not be canonical, as I worked them out by hand (as I have not yet fully implemented the canonization algorithm).

Signatures of the same height may be different for the atoms in a molecule. At a height of zero, it is simply the atoms. A signature of height one is each atom, plus its neighbours. For G, above, there are two distinct height-1 signatures. For greater heights in G, there are more:


These are three subgraphs (SG) of G, rooted at three different atoms (a, b, c). Each one corresponds to a signature tree, which also correspond to different signature strings (not shown). The trees have been given square nodes, instead of circular ones, just to make them look different. From the symmetry of G, it may be clear that the other atoms also have one of these same height-2 signatures.

Finally, there are some odd properties of the trees created from the subgraphs, that become noticable in height-3 signatures of G. As mentioned above, a tree cannot have cycles, so when the paths radiating out from the root atom meet on the same atom, it will appear in the tree twice. Further, when paths cross the same bond - at the same time - both atoms in the bond will appear in both orders across two layers:


The subgraph SG shows the former case, by putting two new atoms corresponding to the duplicate visit to the bridging atom in G. For the subgraph SH of the pentagon H the whole of the last bond visited is duplicated, and the signature tree has a pair of duplicate bonds at the leaves. The tree construction process forbids duplication of bonds except in these two ways.

Comments

Popular posts from this blog

How many isomers of C4H11N are there?

One of the most popular queries that lands people at this blog is about the isomers of C4H11N - which I suspect may be some kind of organic chemistry question on student homework. In any case, this post will describe how to find all members of a small space like this by hand rather than using software.

Firstly, lets connect all the hydrogens to the heavy atoms (C and N, in this case). For example:


Now eleven hydrogens can be distributed among these five heavy atoms in various ways. In fact this is the problem of partitioning a number into a list of other numbers which I've talked about before. These partitions and (possible) fragment lists are shown here:


One thing to notice is that all partitions have to have 5 parts - even if one of those parts is 0. That's not strictly a partition anymore, but never mind. The other important point is that some of the partitions lead to multiple fragment lists - [3, 3, 2, 2, 1] could have a CH+NH2 or an NH+CH2.

The final step is to connect u…

Generating Dungeons With BSP Trees or Sliceable Rectangles

So, I admit that the original reason for looking at sliceable rectangles was because of this gaming stackoverflow question about generating dungeon maps. The approach described there uses something called a binary split partition tree (BSP Tree) that's usually used in the context of 3D - notably in the rendering engine of the game Doom. Here is a BSP tree, as an example:



In the image, we have a sliced rectangle on the left, with the final rectangles labelled with letters (A-E) and the slices with numbers (1-4). The corresponding tree is on the right, with the slices as internal nodes labelled with 'h' for horizontal and 'v' for vertical. Naturally, only the leaves correspond to rectangles, and each internal node has two children - it's a binary tree.

So what is the connection between such trees and the sliceable dual graphs? Well, the rectangles are related in exactly the expected way:


Here, the same BSP tree is on the left (without some labels), and the slicea…

Listing Degree Restricted Trees

Although stack overflow is generally just an endless source of questions on the lines of "HALP plz give CODES!? ... NOT homeWORK!! - don't close :(" occasionally you get more interesting ones. For example this one that asks about degree-restricted trees. Also there's some stuff about vertex labelling, but I think I've slightly missed something there.

In any case, lets look at the simpler problem : listing non-isomorphic trees with max degree 3. It's a nice small example of a general approach that I've been thinking about. The idea is to:
Given N vertices, partition 2(N - 1) into N parts of at most 3 -> D = {d0, d1, ... }For each d_i in D, connect the degrees in all possible ways that make trees.Filter out duplicates within each set generated by some d_i. Hmm. Sure would be nice to have maths formatting on blogger....

Anyway, look at this example for partitioning 12 into 7 parts:

At the top are the partitions, in the middle the trees (colored by degree) …