Skip to main content

Numbering atoms, numbering vertices

Further to the similarities between numbering atoms in a structure, and generating unique graphs here is this:


which shows the same molecule with two different numberings on the left, and the resulting graphs on the right. The double bond is not shown on the graphs; but it would probably have to be a labelling of the edge, rather than an actual multiple edge, to still be a simple graph.

So, this quickly shows how - if you start with the vertices of the graph and connect 'all possible ways' - you get molecules that are isomorphic, but numbered differently. Therefore (perhaps) the numbering of the vertices and edges is one of he keys to not creating all the isomorphs and then having to expensively check them all.

Comments

If I understood correctly, the trick is to detect of the numbering your started is unique. The code that the CDK deterministic generated was using, was using this approach. It would exhaustively test all possible graphs, but would stop testing a particular solution if it did not meet some uniqueness evaluation. For this it used a some normalized matrix representation of the graph, from which it started left top and scan the top left row*col to see if it matched this evaluation.

How does that relate to your above analysis?
gilleain said…
That seems like the kind of approach, yes. The trick is to know not to try a particular graph without actually generating it, let alone then testing it against example stored in memory.

It could really be any mechanism, but there should be some rule to say "try only these possible bonds" rather than a method to find out which ones turn out to be the wrong ones.

Popular posts from this blog

Adamantane, Diamantane, Twistane

After cubane, the thought occurred to look at other regular hydrocarbons. If only there was some sort of classification of chemicals that I could use look up similar structures. Oh wate, there is . Anyway, adamantane is not as regular as cubane, but it is highly symmetrical, looking like three cyclohexanes fused together. The vertices fall into two different types when colored by signature: The carbons with three carbon neighbours (degree-3, in the simple graph) have signature (a) and the degree-2 carbons have signature (b). Atoms of one type are only connected to atoms of another - the graph is bipartite . Adamantane connects together to form diamondoids (or, rather, this class have adamantane as a repeating subunit). One such is diamantane , which is no longer bipartite when colored by signature: It has three classes of vertex in the simple graph (a and b), as the set with degree-3 has been split in two. The tree for signature (c) is not shown. The graph is still bipartite accordin

Király's Method for Generating All Graphs from a Degree Sequence

After posting about the Hakimi-Havel  theorem, I received a nice email suggesting various relevant papers. One of these was by Zoltán Király  called " Recognizing Graphic Degree Sequences and Generating All Realizations ". I have now implemented a sketch of the main idea of the paper, which seems to work reasonably well, so I thought I would describe it. See the paper for details, of course. One focus of Király's method is to generate graphs efficiently , by which I mean that it has polynomial delay. In turn, an algorithm with 'polynomial delay' takes a polynomial amount of time between outputs (and to produce the first output). So - roughly - it doesn't take 1s to produce the first graph, 10s for the second, 2s for the third, 300s for the fourth, and so on. Central to the method is the tree that is traversed during the search for graphs that satisfy the input degree sequence. It's a little tricky to draw, but looks something like this: At the top

General Graph Layout : Putting the Parts Together

An essential tool for graph generation is surely the ability to draw graphs. There are, of course, many methods for doing so along with many implementations of them. This post describes one more (or perhaps an existing method - I haven't checked). Firstly, lets divide a graph up into two parts; a) the blocks, also known as ' biconnected components ', and b) trees connecting those blocks. This is illustrated in the following set of examples on 6 vertices: Trees are circled in green, and blocks in red; the vertices in the overlap between two circles are articulation points. Since all trees are planar, a graph need only have planar blocks to be planar overall. The layout then just needs to do a tree layout  on the tree bits and some other layout on the embedding of the blocks. One slight wrinkle is shown by the last example in the image above. There are three parts - two blocks and a tree - just like the one to its left, but sharing a single articulation point. I had